106 PU Ph D Computer Science & Engineering

	PU_2016_106 ch of the following is a self complementing code?
0	Gray code
0	Binary code
0	5211
0	8421 code
132 Whi	f 100 PU_2016_106 ch of the following is not a property of transactions?
0	Dependability
0	Isolation
0	Concurrency
0	Atomicity
117 Zer	F 100 PU_2016_106 Display address instruction format is used in
0	RISC architecture
0	CISC architecture
0	Stack-organized architecture
0	Von-Neuman architecture
110 Let Dep	F 100 PU_2016_106new G be a graph with n vertices and m edges. What is the tightest upper bound on the running time of the First Search on G, when G is represented as an adjacency matrix? (n) (nm²) (n²)
0	(n+m)
106	f 100 PU_2016_106 ch regular expression best describes the language accepted by the following FSM?
	q_0 q_1 q_2 q_3 q_3

\cup	(abb)*
0	(a+b)*a(a+b)*b(a+b)*
	(a+b)*
0	(a+b)*a(a+b)b
139	of 100 PU_2016_106new ich of the following involves context switch? processor thread SPOOL none of these
112 On	of 100 2 PU_2016_106 e of the major difference between a combinational logic circuit such as a decoder and a storage circuit has an RS latch is that:-
0	The storage circuit has no propagation delay
0	The storage circuit requires a different class of gates
0	The storage circuit uses feedback
0	The storage circuit requires a clock input
128	of 100 B PU_2016_106 e intersection operator is used to get the tuples. Common All Repeating Different
131	of 100 PU_2016_106new ich of the following is valid?
(b)	Pointers can be added Pointers can be subtracted Integers can be added to pointers.
0 0	a and b are correct
	a is correct
0	a and c are correct

0	all are correct
134 Whic	of 100 PU_2016_106 ch is a join condition that contains an equality operator?
0	Cartesian
0	Equijoins
0	Cross Join
0	Cartesian Join
144 In a	of 100 PU_2016_106new signed magnitude notation, what is the minimum value that can be represented with 8 bits?
_	-128
	0
	-255
	-127
	of 100 PU_2016_106new
An algorithm to find the length of the longest monotonically increasing sequence of numbers in array $A[0:n-1]$ is given below.	
	Let L_i denote the length of the longest monotonically increasing sequence starting at index i in the array. Initialize $L_{n-1}=1$.
	For all i such that $0 \le i \le n-2$
	$L_i = \begin{cases} 1 + L_{i+1} & \text{if } A[i] < A[i+1] \\ 1 & \text{Otherwise} \end{cases}$
	Finally the length of the longest monotonically increasing sequence is $Max(L_0, L_1,, L_{n-1})$.
	Which of the following statements is TRUE?
0	The algorithm uses dynamic programming paradigm
\sim	The algorithm has a linear complexity and uses branch and bound paradigm
_	The algorithm uses divide and conquer paradigm
\sim	The algorithm has a non-linear polynomial complexity and uses branch and bound paradigm

126	of 100 PU_2016_106 ich of the following field type is used to store photograph of employees?
0	OLE
0	Photo
0	Memo
0	Picture
119	of 100 PU_2016_106 ich of the following logic families is well suited for high speed operations? ECL MOS TTL
\circ	CMOS
135 Whi	of 100 PU_2016_106new ich of the following access specifiers are accessible from own class, from derived class and from ects outside the class? private and public private protected public
127	of 100 PU_2016_106new e statement "The size of a struct is always equal to the sum of the sizes of its members" is:- depends on struct invalid can't say valid
109	of 100 PU_2016_106 e language $L = \{a^{n^2} n \ge 1\}$ is Regular Context Free but not regular Context Free and regular
-	Not Context Free

116	of 100 PU_2016_106new at is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b\}$?
0	{(1, 1), (a, a), (2, a), (1, b)}
	{(1, a), (1, b), (2, a), (b, b)}
	{(1, a), (2, a), (1, b), (2, b)}
0	$\{(1, 1), (2, 2), (a, a), (b, b)\}$
103 The	PU_2016_106new minimum number of D flip-flops needed to design a mod-258 counter is:- 9 8 512
109 We can	PU_2016_106new are given a set of n distinct elements and an unlabeled binary tree with n nodes. In how many ways we populate the tree with the given set so that it becomes a binary search tree? n² 0 n! 1
25 of 100 110 PU_2016_106 Which of the following is Chomsky Normal Form (NT stands for Non terminal and T for terminal and T fo	
0	$NT \rightarrow String of NT$
0	$NT \rightarrow String$ of exactly two NT
0	$NT \rightarrow (String of T)(String of NT)$
0	$NT \rightarrow String of NT and T$
26 of 100 122 PU_2016_106 PAL circuit consists of:-	
0	Programmable OR & Fixed AND Logic
0	Fixed OR & fixed AND logic
O	Fixed OR & programmable AND logic

0	Programmable OR & programmable AND logic	
27 of 100 122 PU_2016_106new If i=5, what is the output for printf ("%d%d%d", ++i,i,i,i++)?		
	6,5,6	
	5,6,7	
	6,6,7	
	7,6,5	
123 The	of 100 PU_2016_106 average time required to reach a storage location in memory and obtain its contents is called	
_	Latency time	
_	Turnaround time	
\sim	Access time	
	Response time	
	of 100 PU_2016_106new	
	e simplified SOP (Sum of Product) form of the Boolean expression	
(P	$+\overline{Q}+\overline{R}$). $(P+\overline{Q}+R).(P+Q+\overline{R})$ is:	
0	$\left(P+\overline{Q}.\overline{R}\right)$	
0	$\left(P + \overline{Q}.\overline{R}\right)$ $\left(\overline{P}.Q + R\right)$	
0	$(\overline{P}.Q + \overline{R})$ (P.Q + R)	
0	(P.Q+R)	
118 How (x+y	of 100 PU_2016_106new many strings of length less than 4 contains the language described by the regular expression ")*y(a+ab)*?	

100	7
0	12
0	11
101 G S al	PU_2016_106 PU_2016_106 eiven the following statements: 1: If L is a regular language then the language $\{uv \mid u \in L, v \in L^R\}$ is so regular. 2: L = $\{uvv^R\}$ is a regular language. Which of the following is true?
0	Both S1 and S2 are not correct
0	Both S1 and S2 are correct
0	S1 is correct and S2 is not correct
0	S1 is not correct and S2 is correct
106 Let one	PU_2016_106new the page fault service time be 10 ms in a computer with average memory access time being 20 ns. If page fault is generated for every 10 ⁶ memory accesses, what is the effective access time for the nory? 30 ns 23 ns 35 ns 21 ns
100 The com	PU_2016_106 identification of common sub-expression and replacement of run-time computations by compile-time equitations is
0	Constant folding
0	Local optimization
0	Loop optimization
0	Data flow analysis
115	PU_2016_106 non-vectored interrupt, the address of interrupt service routine is:- Supplied by the interrupting I/O device

0	Assigned to a fixed memory location
\circ	Obtained from interrupt address table
0	Obtained through Vector address generator device
121	of 100 PU_2016_106 effective solution to the power consumption problem lies in using transistors to implement
0	PMOS
0	NMOS & PMOS
0	TTL shottky
0	NMOS
129 X=n	of 100 PU_2016_106new nalloc(Y). Which of the following statement is correct?
0	Y points to the memory allocated
0	X is the size of the memory allocated
0	X points to the memory allocated
0	none of these
141	of 100 PU_2016_106 nary tree whose every node has either zero or two children is called:-
0	Binary search tree
0	Complete binary tree
0	Binary tree
0	None of above
117 Wha	of 100 PU_2016_106new at is the cardinality of the set of odd positive integers less than 10?
0	10
0	3
0	20
0	5
	of 100 PU_2016_106new

What is the output generated by the following program?

```
#include <stdio.h>
 main()
 int a, count;
 int func(int);
 for(count=1;count <= 5; ++count)
 a=func(count);
 printf("%d",a);
 int func(int x)
 int y;
 y=x*x;
 return (y);
    1234567
    9162514
    1491625
    2516941
40 of 100
114 PU 2016 106new
Consider a hash table with 9 slots. The hash function is h(k) = k \mod 9. The collisions are resolved by
chaining. The following 9 keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17,10. The maximum,
minimum, and average chain lengths in the hash table, respectively, are:-
    4, 1, and 0
    3, 0, and 2
    3, 0, and 1
    1, 2, and 1
41 of 100
134 PU 2016 106new
Which of the following is used to represent an object that invokes a member function?
    scope resolution operator
    #symbol
```

0	assignment operator
0	'this'
	f 100 PU_2016_106new
in	t *i;
flo	pat *f;
ch	ar *c;
W	hich are the valid castings?
0	(float) &c
0	(int) &c
0	(char) &ib
0	none of these
138 A de	If 100 PU_2016_106 adlock exists in the system if and only if the wait-for graph contains a Direction
\sim	Rotation
0	Bi-direction
0	Cycle
105 The follow	PU_2016_106new lexical analysis for a modem computer language such as Java needs the power of which one of the wing machine models in a necessary and sufficient sense? Non-deterministic pushdown automata Finite state automata Turing machine
0	Deterministic pushdown automata
137 The	of 100 PU_2016_106new process of creating a specific class from a class template is called:- instant class
	function template
0	template instantiation

0	instantiation
136 The	of 100 PU_2016_106new destructor for the class integer can be defined as:-
0	integer()
0	~integer{}()
0	~integer(){}
0	~integer
140 Link	of 100 PU_2016_106 red lists are best suited:-
0	for dynamically changing data and data size
0	for dynamically changing data size
0	for dynamically changing data
0	for relatively permanent collections of data
126 С рі	of 100 PU_2016_106new rogramming allows:-
0	a) only call by value
0	b) only call by reference
0	c) both a & b
0	d) only call by value and sometimes call by reference
114 Whi	of 100 PU_2016_106 ch Logic circuit is used for addressing memory?
0	Multiplexer
0	Direct memory access circuit
0	Full adder
О	Decoder
120	of 100 PU_2016_106new jular expression are:-
0	Type 2 language
0	Type 1 language
0	Type 0 language

```
Type 3 language
51 of 100
124 PU_2016_106new
 For the following statement, find the values generated for p and q.
 int p=0, q=1;
 p=q++;
  p=++q;
  p=q--;
  p=--q;
   1,2
   1,1
   0,0
52 of 100
129 PU_2016_106
The union operation automatically ______, unlike the select clause.
   Eliminates duplicate
   Eliminates unique tuples
   Adds common tuples
   Adds tuples
53 of 100
121 PU_2016_106new
       ____ states are called the halt states.
   ACCEPT AND START
   ACCEPT and REJECT
   ACCEPT and READ
   ACCEPT AND WRITE
54 of 100
104 PU_2016_106
 Let S and T be the language over \Sigma = \{a, b\} represented by the regular
 expressions (a + b^*)^* and (a + b^*) respectively. Which of the
 following is true?
\circ S \cap T = \phi
```

	$T \subset S$ S = T $S \subset T$
125	PU_2016_106 Neumann architecture is MISD SISD SIMD MIMD
130 The	PU_2016_106 number of attributes in a relation is called its:- Tuples Degree Cardinality Entity
144 The	of 100 PU_2016_106 depth of a complete binary tree is given by:- Dn = n log2n Dn = log2n+1 Dn = n log2n+1 Dn = log2n+1
138 The	of 100 PU_2016_106new declarations for the manipulators are available in:- iomanip.h iostream.h conio.h
137	of 100 PU_2016_106 deadlock state can be changed back to stable state by using statement. Savepoint

000	Rollback Commit Deadlock
107 W (i (i (i	of 100 $P \text{ PU}_2016_106$ Thich of the following are regular sets?) $\{a^nb^{2m} \mid n \geq 0, m \geq 0\}$ i) $\{a^nb^m \mid n = 2m\}$ ii) $\{a^nb^m \mid n \neq m\}$ v) $\{xcy\mid x,y\in\{a,b\}^*\}$ (iv) only (i) only (i) and (ii) (i) and (iv)
167 A w	of 100 7 PU_2016_106new web server sends a program to be stored on the user's hard drive called a frequently without isclosure or the user's content. website server datastore cookie
118	of 100 3 PU_2016_106-2 sich of the following is used for code versioning? GetHub GitHub Registry TCP/IP
116	of 100 6 PU_2016_106-2 he context of .NET, the intermediate code is called:- Mega Code MSIM MSIL

Byte Code
64 of 100 123 PU_2016_106-2 If the bit rate for a 16-QAM signal is 4000 bps, what is the baud rate? 1200
1000
6400
C 400
65 of 100 113 PU_2016_106-2 The technique used to enhance the visual appearance of a web page is called:- DSS
CSS
C BlueDesign
6
Styler
66 of 100 163 PU_2016_106new Which of the following is a keyword for handling exception in JAVA?
C try
static
C final
© obj
67 of 100 124 PU_2016_106-2 Given an AM radio signal with a bandwidth of 10 KHz and the highest-frequency component at 705 KHz, what is the frequency of the carrier signal?
^C 715 KHz
710 KHz
700 KHz
^O 705 KHz
68 of 100 110 PU_2016_106-2 Which of the following is a Deep learning toolkit:-
Rubber
Theano

0	BOSS
	CAD
169	of 100 PU_2016_106new tuation where a business is selling online to an individual consumer is:-
\circ	E-Business
0	banner
0	Business-to-Consumer E-Commerce
0	Business-to-Business E-Commerce
161 Nan	of 100 PU_2016_106new ne the operator which is automatically overloaded in JAVA.
0	*
0	-
0	+
О	none of these
112	of 100 PU_2016_106-2 MA stands for:-
0	European Computer Manufacturer Association
0	Electronic Computer Memory Adapter
0	Electrical Computer Manager Application
0	European Computer Military Adapter
176	of 100 PU_2016_106new -Tree of order m is an m-way search tree with:-
0	the root of the tree having more than m subtrees
0	all leaves of the tree on the same level
0	each node, except for root and leaves, having less than m/2 subtrees
0	all its leaves connected to form a linked list
173 A n	of 100 PU_2016_106new etwork node consisting of both hardware and software that isolates a private network from public works is:-
	intermediary

0	internet mall
0	fare tracker
0	firewall
166	of 100 PU_2016_106new v are the risks documented in SDLC?
0	RMMM
0	using RIS
0	using MIS
0	КРА
160 Wha	of 100 PU_2016_106new at are the two primitive operations of semaphore?
0	SIGNAL & WAIT
0	BUSY & WAIT
0	FREE & SIGNAL
0	WAIT & FREE
115	of 100 PU_2016_106-2 iche is a:-
0	Web Server
0	Web Manager
0	Web Protocol
0	Web Client
119 Гhе	of 100 PU_2016_106-2 hybrid mobile apps shall be developed using:-
0	GTK
0	Ionic
0	Ada
0	Pascal
171	of 100 PU_2016_106new nputer-to-Computer direct transfer of standard business documents is:-
*	EDI (Electronic data interchange)

0	EFT (Electronic Fund transfer)
0	Electronic distributor
0	e-broker
177	PU_2016_106new rowser is a software tool that helps:- linking of application program modules viewing of application information debugging of application software
0	developing application programs
121	of 100 PU_2016_106-2 heration of intermediate code based on an abstract machine model is useful in compilers because:-
	Syntax directed translations can be written for intermediate code generation
0	It enhances the portability of the front end of the compiler
0	It is not possible to generate code for real machines directly from high level language
0	It makes implementation of lexical analysis and syntax analysis easier
195 Whi	of 100 PU_2016_106new ch of the following is used to minimize data errors when data is transferred?
0	checksum
0	check bit
0	patching
0	transmit
193 A M	of 100 PU_2016_106new ODEM is connected in between a telephone line and a:-
0	serial port
0	parallel port
0	computer
0	adapter
137	of 100 PU_2016_106-2 addressing mode which makes use of in-direction pointers is Offset addressing mode

0	Indirect addressing mode
0	Index addressing mode
0	Relative addressing mode
183	of 100 B PU_2016_106new ich of the following is not an asymptotic notation? Omega Big 'oh' Theta
0	Alpha
187	of 100 7 PU_2016_106new DSI network architecture, the routing is performed by:-
	sessions layer
0	physical layer
0	transport layer
0	network layer
186 Inte	of 100 5 PU_2016_106new ernet-based broadcasting of audio and video content is:-
0	webonomics
0	webhosting
0	web content design
0	webcasting
87 of 100 140 PU_2016_106-2 Consider the usual algorithm for determining whether a sequence of parentheses is balanced. What is maximum number of parentheses that will appear on the stack AT ANY ONE TIME when the algorithm analyzes: (()(())(()))	
0	3
0	2
O	4
159	of 100 PU_2016_106-2 ich one is true about clustered index?

-	
0	Clustered index is built by default on unique key columns
0	Clustered index is not associated with table
0	Clustered index is not built on unique key columns
0	Clustered index is on non-numeric domain
143	of 100 PU_2016_106-2 ch is the most appropriate matching for the following pairs?
Y: Ir Z: A	ndirect addressing 1: Loops nmediate addressing 2: Pointers uto decrement addressing 3. Constants is:-
0	X-1 Y-3 Z-2
0	X-3 Y-2 Z-1
0	X-3 Y-1 Z-2
0	X-2 Y-3 Z-1
189	PU_2016_106new -to-End connectivity is provided from host-to-host in hub router physical layer
91 (transport layer of 100 PU_2016_106new ch of the following is not a memory management scheme?
0	paging memory
0	critical region
\circ	mutual exclusion
0	lock
135 The	of 100 PU_2016_106-2 throughput of a super scalar processor is:-
0	less than 1
O	More than 1
0	Between 1 to 2

191	of 100 PU_2016_106new evice that links two homogeneous packet-broadcast local networks is:-
0	hub
0	bridge
0	repeater
0	router
198	of 100 PU_2016_106new time required for the fetching and execution of one sample machine instruction is:- throughput seek time access time CPU cycle
141 Huf an d	of 100 PU_2016_106-2 fman codes are the applications of with minimal weighted external path length obtained by optimal set.
0	MST
0	BST
0	Weighted Graph
0	Binary tree
96 of 100 131 PU_2016_106-2 Which of the following could not be an Ethernet multicast destination?	
0	83:32:21:21:4D:34
0	B7:7B:6C:DE:10:00
0	7B:AA:C1:23:45:32
0	7C:56:21:1A:DE:F4
97 of 100 133 PU_2016_106-2 You are working with a network that has the network ID 192.168.10.0. What subnet should you u supports up to 25 hosts and a maximum number of subnets?	
0	255.255.255.240
0	255.255.252
0	255.255.254

0	255.255.255.248
130	of 100 PU_2016_106-2 e maximum throughput for pure ALOHA is:-
000	12.4 18.4 18.1 12.1
197	of 100 PU_2016_106new e symbols used in assembly language are:- 0 and 1 codes mnemonics #
138 The	of 100 PU_2016_106-2 principle that a function can always be replaced by its value (irrespective of the context) without nging the meaning is called:- Unbinding Referential transparency Orthogonality Context-free